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Abstract—Quantum computing has been accumulating tremen-
dous attention in recent years. In current superconducting quan-
tum processors, each qubit can only be connected with a limited
number of neighbors. Therefore, the original quantum circuit
should be converted to a hardware-dependent circuit, and this
process is called qubit mapping and routing, in which typically
extra SWAP gates need to be inserted. Due to a limited qubit
lifetime, one of the main objectives of qubit mapping and routing
is to minimize the circuit depth, which is a time-consuming
process. By studying several existing greedy mappers, we extract
and analyze two patterns that significantly impact the mapping
and routing performance. Then, we propose a sliding window
method named SWin, which dramatically reduces the computa-
tional cost with negligible performance degradation. For devices
with constrained executable circuit depth, we propose SWin+,
which introduces adaptive circuit slicing methods with VF2++
subgraph isomorphism initial mapping methods. Compared with
the state-of-the-art greedy methods, SWin can find an effective
result by up to 39% depth decrease, on average of 16% for large-
scale circuits. Moreover, SWin can be easily modified to be noise-
aware, while the depth reduction will yield better performance
for real execution. Furthermore, SWin still performs well for
various chip couplings. SWin+ significantly enhances processing
efficiency, achieving improvements up to 22.3×, with an average
increase of 6.1×. Concurrently, it maintains the effectiveness of
the transformed circuit depth.

Index Terms—Quantum computing, Mapping and routing,
Parallel mapper.

I. INTRODUCTION

Quantum computing, an emergent technology, shows con-
siderable promise in enhancing the efficiency of critical com-
putational tasks, such as large integer factoring [2], database
searching [3], and the simulation of quantum systems [4].
Recent advancements have yielded quantum computer proto-
types, including Sycamore [5], Jiuzhang [6], and Zuchongzhi
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[7], which have exhibited quantum supremacy by surpassing
classical computational capabilities in certain tasks. Never-
theless, the progress in quantum computing is significantly
hampered by current limitations in quantum experimental
techniques. It is anticipated that in the near term, both the
quality and quantity of qubits, as well as the fidelity of
quantum operations, will remain suboptimal, characterizing
what is known as the Noisy Intermediate-Scale Quantum
(NISQ) era [8]. Presently, quantum devices harboring hundreds
of qubits have been either constructed or emulated by entities
such as IBM [9], Google [5], and Intel [10].

The process of running quantum algorithms generally in-
volves three key steps. Initially, a quantum algorithm is
transformed into a logical circuit made up of standard quantum
gates [11]. This logical circuit is then adapted into a form that
is compatible with the specific quantum hardware on which it
will be executed. The final step involves generating a series
of control signals that drive the physical quantum devices.
While considerable progress has been made in understanding
and optimizing the first and last steps of this process [2], [3],
[4], [12], the middle step, which involves adapting the logical
circuit for specific hardware, remains a significant challenge.
This step is crucial for improving the performance of quantum
applications, yet it still lacks robust solutions.

The present study is primarily concentrated on the inter-
mediary step of quantum algorithm execution. The initial
transformation presupposes every quantum operation can be
executed among any pair of qubits, an assumption that diverges
from practical constraints. Consequently, not all logical cir-
cuits are amenable to straightforward implementation on Noisy
Intermediate-Scale Quantum (NISQ) devices. For instance,
the logical circuit depicted in Fig.1(b) cannot be directly
executed on the quantum chip illustrated in Fig.1(a), due to
the lack of physical connectivity between qubits involved in
each two-qubit gate. This challenge is typically surmounted
through the insertion of SWAP gates, a process denoted as
the qubit mapping and routing problem within this paper,
with the algorithmic solution referred to as a mapper. More-
over, given the finite coherence times of qubits or device
constraints on execution time, which correlates to a limited
executable circuit depth, the resulting circuit must remain
as shallow as possible to mitigate decoherence effects. As
demonstrated in Fig.1(c) and Fig.1(d), the strategic insertion of
SWAP gates significantly influences the resultant circuit depth,
underscoring the critical nature of the mapping and routing
strategy employed. Moreover, circuit-slicing technologies can
be applied to execute deep circuits on a shallow device with
a maximum allowable execution time.

Prior investigations have explored various greedy algorithms
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Fig. 1: Example of circuit mapping and routing. (a) Hardware
coupling graph (b) The logical circuit (c) Circuit executable
with circuit depth 5 (d) Circuit executable with depth 4.

aimed at minimizing the depth of the resultant circuit [13],
curtailing the quantum gate count [14], [15], or mitigating
the impact of quantum device noise [16]. While these greedy
mappers exhibit commendable efficiency, the depth of the
transformed circuit often deviates significantly from the opti-
mal. Furthermore, several studies focused on achieving either
gate count or circuit depth optimality. For instance, OLSQ [17]
leverages an SMT solver [18], whereas TOQM [19] employs
an A∗ search algorithm to derive solutions that minimize
circuit depth. Although these optimal mapping strategies yield
optimal outcomes for circuits of limited scale, their com-
putational complexity escalates exponentially with increasing
circuit size. Thus, striking a balance between the efficiency and
optimality of qubit mapping and routing poses a considerable
challenge. Recent contributions [20], [21] have introduced
circuit partitioning techniques for executing deep quantum
circuits on devices with shallower capacities, circumventing
the constraints posed by limited coherence times or executable
circuit depth.

In this work, we discover two greedy patterns that make
the usual greedy mappers perform less effectively, called Im-
mediate Execution and Online SWAP Insertion. These patterns
widely exist in general quantum circuits. This makes it hard for
the greedy mapper to find optimal or near-optimal solutions
efficiently. Based on the discoveries, we propose a smooth
mapping algorithm SWin to efficiently find the mapping and
routing result. Moreover, we present a new mapping and
routing framework, which includes three components: quan-
tum circuit partitioning, parallel sub-circuit smooth mapping,
and parallel circuit connecting. This framework can flexibly
balance the efficiency and effectiveness of qubit mapping in
various quantum application scenarios. Compared with the
existing known mappers, this framework provides considerable
improvement in terms of mapping effectiveness and efficiency.
On devices with limited execution time, we introduce SWin+,
which contains adaptive circuit slicing technique and initial
mapping methods alongside SWin to achieve better perfor-
mance, i.e., more mapping and routing efficiency with a slight
loss on device utilization.

Based on extensive evaluations, SWin significantly out-
performs IBM qiskit [9] and TOQM (extensive greedy ver-
sion) [19] on result circuit depth. SWin shows 2%-39% depth
reduction, on average 16%, compared to the state-of-the-art
algorithms on IBM novel Heavy hex architecture and grid
chips, e.g., IBM Quito, Guadalupe, Prague and zuchongzhi.
With the requirement for more effectiveness on circuit execu-
tion fidelity, noise-aware SWin performs well with real noise
data in most cases than the original. We evaluate SWin on

different couplings, e.g., Linear, Heavy hex and Grid, and
the results also indicate the effectiveness of our algorithm.
On shallow devices whose executable circuit depth is limited,
SWin+ shows great processing efficiency promotion by at
most 22.3×, on avarage 6.1×, while maintaining the result
circuit depth effectiveness.

The rest of this paper is organized as follows. We present
motivating patterns and observations of novel mapping meth-
ods in Section II. In Section III, we provide our smooth
mapping algorithm, new problems introduced by circuit par-
titioning and present a parallel mapping framework with
adaptive circuit slicing method and initial mapping techniques.
We evaluate our mapper and framework and analyze the
performance in Section IV. We conclude this work with future
directions in Section V.

II. PRELIMINARIES

A. Background

1) Qubit and Quantum Gate: In quantum computing, the
fundamental element is the quantum bit, or qubit, which exists
in two primary states, |0⟩ and |1⟩. Qubits possess the unique
capability to inhabit superposition states of the form a|0⟩ +
b|1⟩, where |a|2 + |b|2 = 1 and a, b ∈ C. Typically, qubits are
initialized in the |0⟩ state [22], subsequently manipulated by
quantum circuits, and ultimately measured [23].

Quantum operations deploy both single and multi-qubit
gates to manipulate qubit states, utilizing gates like Pauli-X,
Hadamard, and CNOT. The quality of a qubit is constrained
by its coherence time—the duration it maintains its quantum
state before energy dissipation or environmental perturbation.
Additionally, operational and measurement processes induce
errors, implying that extended coherence times and reduced
error rates enhance execution performance. Despite this, the
inherent instability and susceptibility of qubits often derogate
the performance of quantum algorithms, compounded by the
limited capability of quantum devices to execute deep circuits.

2) Quantum Circuit and Chip: Quantum algorithms are
typically delineated as quantum circuits, which are temporal
sequences of qubit operations. For instance, Fig. 2(a) depicts
the schematic of a quantum adder’s circuit, comprising a series
of quantum gates such as single-qubit gates and controlled-
NOT (CNOT) gates. Terminal measurement operations (g23 ∼
g26) are enacted to extract the computational outcomes.

In the context of Noisy Intermediate-Scale Quantum (NISQ)
devices, the prevalent quantum chip architectures are illus-
trated in Fig. 3. For the execution of a CNOT gate, the in-
volved qubits require a direct physical link on superconducting
quantum chips. However, quantum algorithms conventionally
presuppose the feasibility of operations between any qubit pair.
Current quantum device technologies, regrettably, fall short of
fully accommodating this ideal, owing to inherent limitations.

3) Quantum Circuit Compiling: Quantum circuits require
compilation for device compatibility and performance en-
hancement, a process that involves several non-trivial steps.
Initially, virtual circuit processing is undertaken, entailing the
decomposition of complex gates and the optimization of the
circuit through gate merging or elimination. Then, a mapping

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3500784

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 22,2024 at 14:23:06 UTC from IEEE Xplore.  Restrictions apply. 



3

0q

1q

2q

3q

X
0g

X
1g

H
2g 3g

4g

5g

6g

7g

T

T

T

†T

8g

9g 10g

†T

†T

†T

T S H

M

M

M

M

11g

12g

13g

14g

15g

16g

17g

18g

19g 20g 21g 22g

23g

24g

25g

26g

(a) The quantum adder circuit
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Fig. 2: A typical quantum circuit and compiling result on
Fig. 1(a): the horizontal line represents the qubit, and the
square and the connected line with a circle across two qubits
represent the quantum operation. The lines end with a mea-
surement operation on each qubit.

(a) Origin KF C6

(b) IBM Melbourne
(c) Regetti Aspen4 (d) Zuchongzhi(part)

Fig. 3: Typical quantum chip coupling graphs: the circles
indicate qubits, and the lines between the circles show that
the corresponding qubits can perform two-qubit operations.

from logical to physical qubits is established to create an initial
layout. However, due to chip coupling constraints, certain
CNOT gates may be inexecutable in their current config-
uration. Thus inserting SWAP operations for logical qubit
realignment is crucial, as illustrated in Fig. 2(b). This routing
process iterates until the circuit is completely executable.

The final step involves additional adaptations to accommo-
date hardware-specific limitations, including gate set conver-
sion and circuit depth reduction. The culmination of these
procedures transforms a device-independent quantum program
into an executable sequence tailored to a quantum device.

B. Qubit mapping and routing problem

We consider an input quantum circuit P with m quantum
registers (represented as Ql), and the operations in P only
contain single-qubit gates and CNOT gates. We also transform
this circuit P into a Directed Acyclic Graph (DAG) GP . In
GP , each gate is represented as a node in DAG, and the
dependencies between gates are represented as edges. The
depth of the circuit is denoted as DP (consider the depth of
single-qubit gates and CNOT gates both to be 1 in this work),
which is the depth of the longest path (critical path) in GP . The
quantum chip C contains n qubits, corresponding to a qubit
set Qp, and its coupling graph is denoted as a undirected graph
GC = (Qp, Ep) , Ep ⊆ Qp×Qp. The edge eij between qi and
qj and qi, qj ∈ Qp, eij ∈ Ep exists if and only if qi and qj are

physically connected. We have a mapping M = f : Ql → Qp

during circuit transformation.
We denote M I as the initial mapping, and PT is the

transformed circuit matching hardware constraints of quantum
chip C. We use

{
M I , PT , C

}
to denote the mapping result of

P . If a circuit P can be executed on a quantum chip C starting
with given initial mapping M I by topological sorting of nodes
in GP . We call

{
M I , P, C

}
satisfy the circuit executability.

Specifically, when P only consists of a single gate, we call
this condition gate executability. As shown in Fig. 2(b), the
mapping result of the quantum adder circuit satisfies the circuit
executability on the chip in Fig. 1(a).

Based on the system model defined above, we then define
the qubit mapping and routing problem:

Problem 1. Qubit Mapping and Routing problem.
Input: A quantum circuit P with depth DP and quantum chip
C with exact topology depicted by GC .
Output: A mapping result

{
M I , PT , C

}
where

{
M I , PT , C

}
satisfies circuit executability and DPT is minimized.

Problem 2. Min-Depth Qubit Mapping problem.
Input: A given quantum chip C with its qubits Qp, quantum
circuit P with its qubits Ql and a constant k.
Output: A mapping M = f : Ql → Qp where the added depth
DPT −DP is bounded by a constant k.
Problem Hardness: When k = 0, the qubit assignment
problem has been proved to be NP-complete in Theorem 3.1
of [14], so this problem is NP-hard.

Problem 3. Min-Depth Qubit Routing with initial mapping.
Input: A given mapping M I = f : Ql → Qp, a quantum chip
C and quantum circuit P .
Output: A mapping result

{
M I , PT , C

}
where

{
M I , PT , C

}
satisfies circuit executability and DPT is minimized.
Problem Hardness: Parallel Token Swapping Problem (PTSP)
is a special case of Min-Depth Qubit Routing. While PTSP is
shown to be NP-complete [24], this problem is NP-hard.

C. Related work

Extensive research has been conducted on qubit mapping
and routing, alternatively termed quantum circuit compiling,
circuit layout, circuit transformation, qubit allocation, and
qubit routing [25], [26], [17], [15], [13], [27], [19], [28]. Given
the NP-completeness of this challenge, various approaches
have been explored, including optimization objectives, prob-
lem models, methodologies, and scalability considerations.

A significant portion of the previous works is dedicated
to minimizing the number of inserted SWAPs [15], [14],
[29], [25], [13], [30], [31] and augmenting SWAP parallelism,
albeit without addressing the overall circuit depth. Childs et
al. [27] target reducing the depth of inserted SWAPs, while
Lao et al. [32] focus on the parallelism between inserted
SWAPs and original gates, albeit not achieving theoretical
optimality. Noise-aware approaches have also been proposed,
with Tannu et al. [16] introducing a heuristic algorithm to
bolster execution performance. Alternatively, works by Murali
et al. [33] and Tan et al. [17] reformulate the mapping task
into an SMT problem, leveraging SMT solvers to ascertain
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optimal or near-optimal solutions. Furthermore, learning-based
methodologies [29], [31], [34] have been employed to address
the qubit mapping and routing problem.

Several studies have investigated circuit partitioning exe-
cution, where a quantum circuit is divided into subcircuits
with less depth, to overcome the challenges posed by time-
constrained quantum devices that limit circuit execution to a
specific duration. Adrián et al. [20] devised a methodology
for executing segmented circuits and reconstructing quantum
states, catering to quantum devices with execution time con-
straints. Some research efforts [35], [36] have explored circuit
simulation through partitioning based on qubits. Zulehner et
al. [25] employed a strategy of dissecting circuits by layers,
aiming to reduce the supplementary costs associated with
quantum circuit mapping and routing. Baker et al. [21] intro-
duced a time-sliced circuit partitioning technique, particularly
for modular quantum devices. Moreover, considering the error-
prone nature of qubits, some works [37], [38], [39] are focused
on hardware equipped with Quantum Error Correction (QEC).
These works are dedicated to the compilation of circuits
encoded with QEC codes that address a variety of constraints.

It should be noted that, although this work may be similar
to that presented in TOQM [19], the primary novelty of this
study lies not in the A* algorithm but rather in the sliding
window approach, which is based on our discoveries regarding
the two greedy patterns. The minimum-depth qubit mapping
can be addressed using various methods, as it functions merely
as a subroutine, including formal method-based approaches
(e.g., SMT-based [17] and MAXSAT-based mapper [40]). The
sliding window approach operates at a higher level. Even when
our optimization goal is the number of SWAP gates or fidelity,
the subroutine could involve mappers with corresponding
objectives, as exemplified by the noise-aware SWin shown
in Section IV-C2.

D. Motivation

The qubit mapper’s execution procedure typically unfolds
in a bifurcated manner. Initially, an initial mapping of the
quantum circuit onto the quantum chip is formulated. Then,
the mapper evaluates the necessity and potential locations for
SWAP insertions, continuing this assessment until the circuit
is rendered sequentially executable on the target quantum chip.
Through an examination of various qubit mapper implemen-
tations [13], [15], [14], [17], [19], we have discerned two
prevalent paradigms:

• Immediate Execution: If the current gate satisfies the gate
executability, execute it immediately.

• Online SWAP Insertion: SWAP gates are not considered
until no gate can be executed under the current mapping.

Greedy mapping algorithms, aimed at minimizing mapping
depth, predominantly employ Immediate Execution and Online
SWAP Insertion strategies to notably reduce computational
time, despite maintaining polynomial complexity in circuit
depth. As depicted in Fig. 4, G1 meets the immediate ex-
ecutability criterion (Immediate Execution), whereas greedy
approaches might not consider G2 due to falling beyond
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Fig. 4: Examples of two patterns: when we map the circuits
in Fig. 4(b) to the chip represented by Fig. 4(a), the greedy
SWAP insertion strategies tend to give the answer in Fig. 4(c),
Fig. 4(d) shows one of the optimal strategies.

the lookahead threshold (Online SWAP Insertion). Outcomes
from such mappers often resemble the scenarios in Fig. 4(c),
contrasting with the optimal mappings illustrated in Fig. 4(d).

TABLE I: The number of patterns in some typical circuits
mapping and routing result on IBM Yorktown.

Circuit name 4gt11 82 4gt11 84 4gt13 92 aluv0 27 aluv1 28 aluv1 29 aluv12 33

Original depth 20 11 38 21 22 22 22
Greedy result 24 15 44 45 56 50 45
Optimal result 23 13 41 27 25 25 27

Number of patterns1 1 1 2 2 1 3 2

1: Every time the circuit depth increases due to two greedy patterns, we
increase the number of patterns by 1.

An evaluation, presented in TABLE I, of a basic greedy
mapper based on these principles against optimal searches
(obtained by original TOQM for small-scale circuits [19]) on
the IBM Yorktown chip reveals the prevalence of these patterns
in greedy solutions, potentially distancing them from optimal.

III. MAPPING ALGORITHM

In this section, we present our mapping method to solve the
qubit mapping and routing problem.

Quantum 

Circuit

Circuit/
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Circuit 
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VF2++ Initial 

Mapping

Transformed 

Circuit
Smooth 
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Fig. 5: Parallel mapping and routing framework.

Design Insights: We propose the smooth sliding window
search algorithm, SWin, predicated on the principles of local
search and adaptive search range. To mitigate the search
time overhead in circuits with an increased number of qubits,
we incorporate fine-grained parameters to optimize the trade-
off between effectiveness and efficiency. To ensure the com-
putational efficiency of SWin, we devise two strategies to
address the exponential computational overhead: reduction to
single gate and greedy execution. In light of the constrained
execution time imposed on quantum devices, we introduce
SWin+ to employ an adaptive circuit partitioning technique
to execute quantum circuits. This approach is complemented
by integrating parallel mapping and routing with efficient
initial mapping strategies to enhance mapping efficiency and
execution performance. The overall mapping algorithm is
shown in Fig. 5.
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Algorithm 1: SWin
1 Input Quantum circuit P and its DAG GP with depth

Dp, quantum chip C and searching depth Sd;
2 Output Transformed circuit PT , initial mapping M I

and final mapping MF ;
3 M I = {Qi

l → Qi
p | i ∈ {1, 2, · · · , |Ql|}};

4 if Dp ≤ Sd then
5 PT ,MF = opt (P , C, M I );
6 return M I , PT ,MF

7 else
8 i = 0;
9 M I

0 = M I ;
10 while Dp > Sd do
11 Pi = get front layers (GP , Sd);
12 PT

i , = opt (Pi, C, M I
i );

13 pi = get first layer (PT
i );

14 MF
i = get temporary mapping (pi, M I

i );
15 Ei = get executed gates (pi, GP );
16 GP .remove (Ei);
17 Dp.update ();
18 M I

i+1 = MF
i ;

19 i = i+ 1;

20 Pi = get front layers (GP , Sd);
21 PT

i ,MF = opt (Pi, C, M I
i );

22 pi = PT
i ;

23 PT = {p0, p1, ..., pi};

24 return M I , PT ,MF

A. Sliding-Window-based Qubit Mapping and Routing

The choice of search methodology is crucial to ascertaining
the optimal depth solution for qubit mapping and routing.
Within each circuit layer, an exhaustive consideration of all
conceivable scenarios is required, including the execution of
quantum gates and the potential insertion of SWAPs for the
current layer. Nonetheless, such an approach incurs expo-
nential increases in processing time and space overhead as
circuit complexity escalates, i.e., more qubits and more gates.
Consequently, we introduce a sliding-window-based approach
for mapping and routing, detailed in the pseudo-code presented
in Algorithm 1.

... ... ...

...

... ...... ...

... ...

... ... ...

Fig. 6: SWin process: the sliding window moves until the
depth of the remaining circuit is Sd.

Generally, with the input quantum circuit P , DAG GP

with its original depth DP , quantum chip C and the window
size parameter, denoted as Sd, our algorithm outputs the
transformed circuit PT , initial mapping M I and final mapping
MF of the circuit on the chip C, and the

{
M I , PT , C

}

satisfies the circuit executability. First, at the start of the
circuit, we set a trivial initial mapping M I = {Qi

l →
Qi

p | i ∈ {1, 2, · · · , |Ql|}} from logical qubits to physical
qubits which are located in the densest area of target chip.
Then, for each Sd-depth sub-circuit Pi in the middle part of
the circuit, we will find one of the optimal solutions (opt (Pi,
C, M I

i )), denoted PT
i , record the first layer of the solution as

pi (get first layer (PT
i )), and then update the circuit DAG GP

and current depth DP . Our algorithm will iterate this process
until the GP is mapped completely. Fig. 6 provides details
of this process and a straightforward example is presented in
Fig. 7. A detailed explanation is listed as follows:

• Firstly we set the initial mapping M I = {Qi
l → Qi

p | i ∈
{1, 2, · · · , |Ql|}} and compare the circuit depth DP with
the window size parameter Sd. If DP ≤ Sd, we obtain the
optimal solution

{
M I , PT , C

}
of the circuit P on chip

C by opt (Pi, C, M I
i )(line 5) and return final result.

• If DP > Sd, we divide this process into following:
– Initially, we set loop variable i = 0, and the initial

mapping of first iteration M i
0 = M I (line 8∼9). As

the example in Fig. 7, we map the circuit depicted in
Fig. 7(b) onto the chip illustrated in Fig. 7(a), the initial
mapping is set as trivial (qubit qi in logical circuit is
mapped on Qi on the target chip). The initial size of
the sliding window Sd is set to 2.

– For i-th iteration, we take the sub-circuit Pi of the
front Sd layer(s) of the circuit DAG GP (as function
get front layers (GP , Sd) does (line 11). With initial
mapping M i

0, we find the optimal solution PT
i of

the circuit P0 on chip C with subroutine opt (Pi,
C, M I

i ) (line 12). We record the first layer of PT
i

as pi (line 13) and get the temporary mapping MF
i

after pi is executed (line 14) and take this as the
initial mapping of next iteration (line 18). Next, we
delete the corresponding quantum gate(s) executed in
pi from GP and update DP (line 15∼17). We iterate
this process until DP is no longer more than Sd. As
shown in Fig. 7(c), the input for the i-th iteration
consists of a window of depth 2 (Pi) along with
the mapping resulting from the execution of pi−1.
In the context of the SWAP gate execution, the last
two rounds of the three rounds of iteration, referred
to as iterations 1-2, are treated as having altered the
mapping, although the corresponding bits are occupied.
The solution for each sub-circuit is derived from the
subroutine (opt (Pi, C, M I

i )). For iterations 0-3, we
adopt the first layer of the solution as the i-th layer of
the final solution (pi).

– Finally, when at last DP = Sd, for the remaining GP

with a circuit depth of Sd, of which the front Sd layers
can also be considered as Pi (line 20), we still take M I

i

as the initial mapping for Pi’s routing, and we obtain
the optimal solution PT

i and MF
i (line 21). The result

PT
i of last iteration will be completely considered as

result and MF
i be the final mapping of the execution of

the circuit (line 22). As shown in the fourth iteration of
Fig. 7(c), because the current circuit depth aligns with
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Fig. 7: A simple example of the SWin algorithm.

the sliding window size Sd, we incorporate all results
from this iteration into the optimal solution (p3).

• For circuit P and chip C, we get the mapping and
routing result PT = {p0, p1, ..., pi}. Return final result
M I , PT ,MF .

Since the initial mapping M I
i of Pi equals the final mapping

MF
i−1 of Pi−1, and GP deletes nodes in the front layer if

and only if the node has been executed in pi,
{
M I , PT , C

}
satisfies the circuit executability.

B. Key design considerations

Efficiency is crucial for a qubit mapper, especially when
seeking optimal or near-optimal depth solutions. Our sliding-
window-based algorithm emphasizes the mapping strategy
within each window. We discuss window size parameters and
propose an adaptive method for adjusting window size to
optimize the trade-off between result depth and time overhead.
Given the potential for significant time overhead with larger
circuits and quantum chips, we introduce two methods to
ensure the efficiency of our mapping algorithm in worst-case
scenarios. For shallow devices, we introduce adaptive circuit
slicing methods and VF2++ subgraph isomorphism [41] initial
mapping technique to enhance efficiency while maintaining
effectiveness.

1) Min-depth circuit routing using A∗: As the subroutine
of SWin, the selection and implementation of the opt func-
tion significantly influence the performance of the algorithm,
particularly in terms of solving efficiency and execution ef-
fectiveness. If the implementation of this function is sub-
optimal, the resulting circuit depth produced by SWin will be
far from the optimal solution, and conversely, if the efficiency
of the opt function is notably high, SWin will yield results
with a relatively polynomial-level efficiency. As highlighted
in Section II-D, significant challenges arise due to Immediate
Execution and Online SWAP Insertion. One approach involves
reformulating the entire circuit as an SMT problem and

leveraging the z3 solver for resolution [18], yet this strategy
proves highly inefficient in practice [17].

In designing an optimal circuit mapper, it is pivotal to assess
the necessity of incorporating SWAP operations at each time
step, alongside the immediate execution of quantum gates that
meet hardware constraints. This approach entails evaluating
all possible permutations of executable quantum gates and
SWAPs on the chip, extending the search until the circuit’s
completion. Prior work [19] has demonstrated the feasibility
of this approach, suggesting that heuristic functions can further
improve search efficiency while maintaining optimality.

Accordingly, our proposed smooth mapper adopts the A∗

search algorithm to ensure optimality, with the heuristic func-
tion following the strategy outlined in [19]. This method not
only preserves optimality but also facilitates the application of
various pruning techniques to enhance efficiency.

2) Smooth searching with sliding window: As depicted in
Fig. 8, executing the circuit on Fig. 1(a) with SWAPs at distinct
time steps maintains depth optimality, negating the need for an
excessively large global search window. This revelation allows
for a trade-off between efficiency and efficacy.

0 0( )q Q

1 1( )q Q

2 2( )q Q

3 3( )q Q

HH

1 2 3

(a) Original circuit

0 0( )q Q

1 1( )q Q
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HH

SWAP

1 2 3 4 5 6

(b) SWAP insert strategy

0 0( )q Q

1 1( )q Q

2 2( )q Q

3 3( )q Q

HH

SWAP

1 2 3 4 5 6

(c) Another strategy

Fig. 8: Sliding window size impact on optimality.

Consequently, we employ a sliding window approach, where
each window resolves only the initial layer’s outcome in
the given sub-circuit. With window size denoted as Sd and
the circuit’s original depth as d, this approach effectively
reduces the circuit transformation cost from exp(poly(d)) to
poly(d) exp(poly(Sd)), given Sd ≪ d. Employing a suffi-
ciently large Sd ensures near-optimal results, albeit potentially
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at significant time and space costs. To address this, we propose
the subsequent adaptive methodologies.

3) Adaptive window size: Despite the constrained cost
within its designated window, SWin may incur prohibitively
high search costs for quantum circuits of significant scale
and chips with high connectivity. To address this, we in-
troduce Thigh and Trollback to represent the node count in
the search process. Exceeding Thigh triggers a reduction in
subsequent window sizes. Additionally, should search costs
surpass Trollback during execution, a rollback mechanism
is activated, terminating the current window’s search and
decrementing Sd by one, provided Sd is above 1. Then, we
regenerate the window (sub-circuit) and re-execute our search
process. Practically, for circuits with over eight logical qubits,
Sd initiates at 5. A similar strategy can elevate Sd in response
to Tlow, contingent on available computational resources.

4) Efficiency-guaranteed extensions: The scalability of the
A∗ algorithm, particularly within the context of qubit mapping
algorithms with optimality guarantees, remains a significant
limitation. For example, on a 66-qubit zuchongzhi processor,
the potential two-SWAP combinations can number in the thou-
sands, with the total permutations being substantially higher.
As previously mentioned, the time complexity of SWin is
characterized by poly(d) exp(poly(Sd)). Yet, the exponential
factor exp(poly(Sd)) can become prohibitive, even for circuits
with a depth of one, rendering the SWin algorithm vulnerable
to the quantum chip’s connectivity and the gate density within
quantum circuits.

To address this problem, we propose two strategies: reduc-
tion to single gate and greedy execution. These are invoked
when the sliding window size is reduced to one, and the
computational demands remain excessive. The former strategy
involves considering only a single random gate within this
1-depth window, thereby isolating chip connectivity as the
sole determinant of execution time, while still accounting
for circuit depth within this window. Conversely, the greedy
execution approach employs a lookahead search strategy to
greedily map the sub-circuit based on Immediate Execution,
ensuring the immediate execution of any gate that meets the
executability criteria. The primary additional cost associated
with the greedy execution strategy is related to sub-circuit
generation, requiring a practical consideration of the impact
of sub-circuit depth, i.e., greedy window size Sg .

For example, let us assume it as H(1), CNOT (3, 6),
CNOT (2, 4), X(5), and X(8). Among these, the gates
CNOT (3, 6), H(1), X(5), and X(8) can be executed directly.
The reduction to single gate strategy will randomly select
one of these gates to form a new window and employ our
internal search method for this 1-gate window to identify the
optimal execution solution for that gate. When the selected
gate is a CNOT gate that cannot be executed directly (e.g.,
CNOT (2, 4)), the optimal solution corresponds to the shortest
path for the related two qubits; otherwise, the gates are
executed directly. In contrast, the greedy execution approach
will have our algorithm directly execute CNOT (3, 6), H(1),
X(5), and X(8), subsequently updating the window to pro-
ceed with the algorithm.

5) Adapting shallow device: Following scenarios similar

to those discussed by Perez et al. [20], quantum circuits on
quantum devices can be constrained by a limited execution
time, specifically a maximum allowable execution time T,
which correlates to a circuit depth Ddev . Thus, quantum
circuits are sliced into multiple sub-circuits for sequential
execution. Typically, the approach involves a measure-and-
reconstruct strategy where the result of the i-th sub-circuit
is measured, and the quantum state is either reconstructed
or loaded from QRAM before executing the (i+1)-th sub-
circuit, thus avoiding qubit remapping across different sub-
circuits. However, the number of sub-circuits should be as
low as possible, for which many sub-circuits mean intolerant
execution overhead, i.e., execution times and reconstruction or
loading cost. This calls for an effective mapper for shallower
devices with a limited executable circuit depth.

To address this challenge efficiently, firstly, we analyze the
relationship between the original depth, the number of gates
of circuits, and their mapping result depths (as shown in Fig.
9). The result indicated that (1) SWin shows a smooth trend
of compiling result depth with circuit scaling up (either the
depth or the number of gates increases); (2) The coefficient
of variations differs for different circuits or scales. Based
on the observations, we then introduce SWin+: a strategy
for pre-slicing circuits and parallelizing the mapping and
routing of sub-circuits. This approach not only maintains the
effectiveness (i.e., the circuit depth) in the resulting circuits
but also significantly enhances the efficiency of the mapping
process for executing long circuits on shallow devices.
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Fig. 9: Characterization for SWin on two circuits: cm82a 208
and vqe uccsd n6. The number of slices indicates the circuit
scale of sub-circuit depth or number of gates (the scale is
calculated by dividing the circuit into the same number of sub-
circuits). The coefficient of variation is defined as the ratio of
the standard deviation to the mean value.

The initial mapping of quantum circuits may significantly
impact the qubit routing process. In extreme cases, a perfect
initial mapping might negate the need for any additional
SWAPs. We consider further integrating initial mapping tech-
niques to reduce the depth of the final outcomes, which could
mitigate the depth increasements by circuit slicing (caused by
breaking the smoothness of SWin). Existing initial mapping
techniques typically utilize heuristic searches [15] or subgraph
isomorphism approaches [26]. We adopt the VF2++ algorithm
[41] to implement subgraph isomorphism for initial mappings.
The algorithm’s pseudo-code is shown in Algorithm 2.
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Algorithm 2: SWin+: Parallel mapping and routing

1 Input Quantum circuit P and its DAG GP with depth
Dp, quantum chip C and its maximum execution
depth Ddev and searching depth Sd;

2 Output Transformed sub-circuits
PT
shallow = {PT

0 ,PT
1 , . . . ,PT

s }, initial mappings for
each sub-circuit M I

shallow = {MI
0,MI

1, . . . ,MI
s};

3 Sample the coefficient of variation of circuit depth and
number of gates cv(depth) and cv(gate num);

4 Assess an initial slice value vini;
5 Calculate the final slice value vfinal;
6 Cut P to sub-circuits Ps = {P0,P1, . . . ,Ps};
7 for sub-circuit Pi ∈ Ps do
8 Ptmp = ∅;
9 while GPi ̸= ∅ do

10 Add the first gate g ∈ GPi to Ptmp in
topological sort of GPi

;
11 Remove g from GPi

;
12 if VF(Ptmp, C) then
13 MI

i = VF(Ptmp, C);

14 else
15 break;

16 Use SWin to obtain the mapping and routing result
PT
i of sub-circuit Pi with initial mapping MI

i ;

17 return M I
shallow, P

T
shallow, C

Fig. 10: SWin+ process: with sampling result for cutting
parameter, input circuits will be sliced and parallelly mapping
and routing with SWin.

Compared to the SWin, the SWin+ additionally requires
the maximum depth Ddev supported by the device. As shown
in Fig. 10, we use initial sampling values vini to assess the
correlation between the mapping results and the original circuit
depth/gate count, with sampling sub-circuits parallelly. Then,
we determine the final circuit slicing parameters vfinal and
then cut the circuit for further processing using the VF2++
algorithm [41] alongside SWin. Finally, we merge the results
and return M I

shallow, P
T
shallow, C.

Sampling and Slicing Step: Initially, we estimate a sam-
pling initial value vini = {vd, vg}, where vd and vg represent
the circuit slicing depth and gate count, respectively, aiming
to approximate the resulting circuit’s depth to the device’s
maximum executing time Ddev . The relationship is given by:

vd, vg =
Ddev

|E|/|Qp|
,

where |E| and |Qp| denote the number of edges and qubits

in the device’s connectivity graph, respectively. By sampling
a subset of sub-circuits with depths vd and gate counts vg
with SWin, we obtain the depth Dsample and coefficients of
variations cv(depth) and cv(gate num), which is defined as
the ratio of the standard deviation to the mean value. Given
that results from SWin suggest a linear relationship between
the original circuit depth and gate count versus the resulting
circuit depth, we set the sampling result estimation distance
dist as:

dist = α× vini ×
∣∣∣∣ Ddev

Dsample
− 1

∣∣∣∣ ,
where α = 1 for slicing with depth and 2 for the number of
gates. The sampling range for vfinal is set between:

[vini − (1− σ)× dist, vini + (1 + ϵ)× dist].

In our evaluations, σ and ϵ are typically set as 0.5 and 1,
respectively. The vfinal in the sampling range that brings the
average depth closest to Ddev without exceeding it is chosen
from the sampling results. The circuit is then divided into sub-
circuits based on the chosen vfinal.

Mapping and Routing Step: For each sub-circuit Pi, the
initial mapping is determined using the VF2++ algorithm [41]
applied to a temporary circuit Ptmp. As gates are added to
Ptmp following the topological order within Pi, we check for
subgraph isomorphism with the device connectivity graph C
until Ptmp and C no longer match (VF(Ptmp, C) = False).
The last successful mapping result MI

i from VF(Ptmp, C) is
then used as the initial mapping to solve the final sub-circuit
mapping result PT

i . Finally, the algorithm returns outputs
M I

shallow, P
T
shallow, C, where PT

shallow = {PT
0 ,PT

1 , . . . ,PT
s }

and M I
shallow = {MI

0,MI
1, . . . ,MI

s}.

IV. EVALUATION

We assess the performance of SWin using benchmark cir-
cuits from QASMBench [42], a widely recognized benchmark
suite for the NISQ era. We compare SWin against several
leading methods, including IBM Qiskit [9] and TOQM [19].
Detailed experimental results are presented in Sections IV-B
and IV-C. Our key findings are summarized as follows:

• SWin efficiently obtains near-optimal solutions for small-
scale circuits with a sliding window size of 8.

• SWin consistently outperforms other state-of-the-art
greedy algorithms for large-scale circuits, achieving up
to a 39% reduction in the depth of transformed circuits,
with an average reduction of 16% compared to TOQM.

• SWin is adaptable as a noise-aware mapping algorithm.
It significantly enhances overall circuit execution fi-
delity across most benchmarks, with the depth reductions
achieved also contributing to substantial fidelity improve-
ments during actual quantum circuit executions.

• Despite varying chip connectivities, SWin significantly
reduces the depth of result circuits, particularly excelling
on the IBM Heavy Hex architecture.

• SWin+ can greatly reduce the time overhead of the
mapping and routing process on shallow devices by at
most 22.3× while maintaining the result circuit depth
effectiveness.
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TABLE II: Comparision of total qubit mapping methods.

Benchmark name n d g
IBM 1 TOQM SWin (reduction to single gate) SWin (greedy execution) 2

Depth CNOT RT Depth CNOT RT Depth CNOT RT Depth CNOT RT

qaoa n3 3 10 14 22 6 0.005 16 6 0.003 16 6 0.016 - -
fredkin n3 3 11 18 34 6 0.007 18 6 0.003 17 6 0.022 - - -
wstate n3 3 17 24 30 6 0.005 24 9 0.004 23 6 0.021 - - -

cat state n4 4 4 4 9 3 0.005 7 3 0.003 7 3 0.004 - - -
hs4 n4 4 5 12 13 3 0.005 11 3 0.003 11 3 0.013 - - -
bell n4 4 9 19 27 6 0.005 19 6 0.004 16 12 0.028 - - -

adder n4 4 11 21 45 9 0.006 24 9 0.004 21 18 0.055 - - -
variational n4 4 25 40 54 3 0.009 36 3 0.004 33 12 0.053 - - -
basis test n4 4 53 85 155 18 0.012 84 9 0.044 61 12 0.068 - - -
vqe uccsd n4 4 128 154 370 87 0.026 198 69 0.121 135 12 0.069 - - -

basis trotter n4 4 733 1264 1901 150 0.105 1144 105 0.994 741 12 0.465 - - -
qec en n5 5 14 22 39 9 0.007 23 9 0.003 19 9 0.012 - -

error correctiond3 5 77 113 191 27 0.016 93 18 0.020 83 18 0.058 - - -
qaoa n6 6 65 146 101 45 0.01 97 16 0.42 99 72 3.64 99 72 2.29

vqe uccsd n6 6 1325 1505 2193 1017 0.11 2139 479 11.28 1405 315 10.52 1654 564 18.00
dnn n8 8 97 520 209 66 0.03 208 35 1.36 169 210 27.38 169 210 17.52

cm82a 208 8 337 650 1001 687 0.05 828 203 5.35 726 1062 24.10 726 1062 24.11
rd53 251 8 712 1291 2057 1380 0.10 1704 374 10.73 1512 1980 41.58 1512 1980 41.57

vqe uccsd n8 8 6451 7175 10792 6075 0.75 9993 1804 54.16 7618 2451 157.06 7820 2925 114.58
ising n10 10 41 235 126 102 0.02 84 37 0.50 80 165 26.00 80 165 26.37
adder n10 10 95 134 178 123 0.02 159 56 0.75 147 210 5.75 156 201 6.33

sat n11 11 387 597 846 630 0.05 691 167 4.05 634 966 26.43 616 843 17.70
z4 268 11 1644 3073 5104 3903 0.36 4129 1115 27.61 3615 5166 153.60 3615 5166 154.21

cycle10 2 110 12 3386 6050 10416 8403 0.66 8402 2163 53.89 7235 10674 281.37 7235 10674 276.33
adr4 197 13 1839 3439 5788 4740 0.30 4754 1364 30.89 3963 5493 143.01 4019 5802 161.87

multiplier n15 15 228 492 560 612 0.04 491 197 2.98 457 831 41.03 461 831 39.87
wstate n27 27 55 105 399 284 0.05 173 110 0.99 116 225 4.34 116 225 4.74

vqe real amplitudes 30 30 31 89 238 183 0.04 162 68 1.04 99 228 3.66 99 228 4.10
vqe real amplitudes 60 60 61 179 663 522 0.07 310 438 14.11 235 585 160.81 235 585 164.40

1 The results of IBM qiskit [9] are generated by applying all transpiling methods and choosing the result with the lowest depth. 2 For small circuits, SWin
with reduction to single gate and greedy execution strategies show the same performance, due to the window size never decreasing to 1. n, d, g: number
of qubits, circuit depth and number of gates. Depth, CNOT, RT: result circuit depth, number of additional CNOT gates and runtime (in seconds).

A. Methodology

Dataset: We utilize quantum circuits from QASMBench [42]
and Variational Quantum Eigensolver (VQE) real amplitude
circuits produced using IBM Qiskit [9] for our evaluations.
Additionally, for the analysis of gate density impact, we
generate random circuits with a fixed gate density using the
QUEKO benchmark suite [43].
Hardware Model: We conduct an assessment of our map-
ping and routing algorithm across various quantum devices
to demonstrate its adaptability and efficiency. For circuits
comprising fewer than five qubits, we utilize IBM Quito.
Circuits ranging from six to sixteen qubits are evaluated on
IBM Guadalupe, while those containing seventeen to thirty-
three qubits are tested using IBM Prague. Additionally, we
explore the performance of our algorithm on a 60-qubit
Variational Quantum Eigensolver (VQE) circuit implemented
on Zuchongzhi. To analyze the impact of chip coupling, we
employ coupling graphs typical of linear layouts, IBM’s Heavy
Hex, and grid couplings.For shallow devices, we still use 16-
qubit linear, heavy hex and grid couplings, with the limited
device executable depth Ddev = 100.
Evaluation Platform: Our experiments are performed on
Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz, with 128GB
DDR4 memory. The operating system is Ubuntu 20.04.
Algorithm Configuration: For small-scale circuits, we fix the
sliding window size to 8. Based on our sensitivity analysis in
Section IV-C, we empirically set the initial window size as
5, sdmax and sg as 10 and adopt the adaptive method with
Trollback = 1700, Thigh = 1000 and Tlow = 500. For SWin+,
we generate several vf inal values for parallel experiments and
take the one with the lowest depth as the final result.

Baselines: We compare our work with two greedy mapper
solutions. The two greedy mappers are IBM qiskit [9] (denoted
as IBM, the results are generated by applying all transpiling
methods and choosing the lowest depth) and extended greedy
mapper from [19] (denoted as TOQM). These three mappers
are initialized with a trivial initial mapping. For shallow
devices, we first compile the circuits by SWin with VF2++
method [41] for initial mapping and then perform the slicing
process, using these methods as the baseline.
Metrics: In our study, we systematically compare the depth
of the resultant circuits and processing times across a range
of scenarios. Additionally, within the context of noise-aware
mapping experiments, we assess the fidelity of the results
utilizing noise data from IBM Guadalupe to further validate
our algorithm’s robustness and practical applicability under
realistic quantum computing conditions. For shallow devices,
besides result depth and processing time, we introduce an
additional metric, Device Utilization Ratio (DUR), which
denotes the overall device execution time utilization and can
be calculated by:

DUR of SWin+ =
Depth (SWin+)
Ddev ∗ Snum

,

where Snum denotes the number of sub-circuits.

B. Experimental Results

Overall Result. With a constrained sliding window size Sd =
8, SWin can consistently find near-optimal solutions. Despite
the limitations imposed by the window size, SWin outper-
forms other state-of-the-art greedy algorithms in terms of
performance for most large-scale circuits, as detailed in Table
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TABLE III: Results on shallow devices.

Benchmark name Coupling SWin+ SWin
Snum

1 RT Depth DUR(%) Snum RT Depth DUR(%)

vqe uccsd n6
Linear 15 3.41 1345 89.67 14 2.71 1341 95.79

Heavy hex 17 7.38 1378 81.06 14 10.62 1352 96.57
Grid 14 12.86 1328 94.86 14 116.11 1327 94.79

cm82a 208
Linear 11 8.14 781 71.00 8 17.04 755 94.38

Heavy hex 8 9.40 728 91.00 8 27.16 732 91.50
Grid 7 72.10 601 85.86 6 104.38 600 100.00

vqe uccsd n8
Linear 117 6.69 6827 58.35 66 55.56 6547 99.20

Heavy hex 97 13.05 6722 69.30 66 146.01 6562 99.42
Grid 68 133.89 6477 95.25 65 1038.66 6469 99.52

sat n11
Linear 9 8.93 699 77.67 7 21.39 695 99.29

Heavy hex 7 16.70 591 84.43 7 32.66 631 90.14
Grid 5 181.88 463 92.80 5 172.22 462 92.40

z4 268
Linear 48 12.62 3884 80.92 37 97.44 3693 99.81

Heavy hex 40 19.06 3527 88.17 36 146.04 3584 99.56
Grid 34 234.02 2942 86.53 30 754.49 2966 98.87

cycle10 2 110
Linear 113 9.13 8097 71.65 76 203.35 7517 98.91

Heavy hex 79 15.36 6947 87.94 72 281.11 7132 99.06
Grid 67 184.94 5946 88.75 60 1309.92 5965 99.42

adr4 197
Linear 56 10.84 4418 78.89 42 112.61 4146 98.71

Heavy hex 44 14.22 3848 87.45 40 143.81 3975 99.38
Grid 37 161.50 3285 88.78 34 806.24 3338 98.18

multiplier n15
Linear 7 17.90 504 72.00 7 27.10 605 86.43

Heavy hex 5 26.72 420 84.00 5 33.29 421 84.20
Grid 4 443.11 336 85.50 4 443.88 337 84.25

1 The number of sub-circuits. RT, Depth, DUR: processing time (in seconds), result circuit depth and overall device execution
time utilization. For SWin+, we only focus on circuit depth of more than 300. RT of SWin+ indicates the maximum
processing time of the sum of sampling, each sub-circuit mapping and routing time.

II. Specifically, SWin can reduce the depth of the transformed
circuits by up to 39%, with an average reduction of 16%
compared to TOQM. This reduction significantly enhances
the quantum execution time, i.e., the circuit depth, where
SWin incurs only a constant factor increase in computational
time relative to traditional greedy methods.

For large-scale circuits and target chips, the flexibility of
SWin allows for adjustments using reduction to single gate and
greedy execution strategies to achieve more efficient and
effective outcomes. Additionally, the noise-aware version of
SWin demonstrates substantial improvements in fidelity across
most circuits. Even as chip connectivity varies, SWin contin-
ues to outperform baseline algorithms by as much as 39%
on the IBM Heavy Hex architecture, particularly on chips
characterized by lower connectivity.

For shallow devices, as shown in Table. III, SWin+ outper-
forms baseline methods significantly in terms of processing
time, shortening it by 22.3× at most, on average 6.1×, with
a slight loss on device utilization ratio in most cases, on
average 83.0%. For result circuit depth, SWin+ also performs
well, maintaining the effectiveness of SWin, i.e., the result
circuit depth decreased at most by 16.7% while at worst
increased by 7.8%. For some circuits with a shallow initial
depth (such as sat n11, multiplier n15), the time consumption
of SWin+ increased. This is mainly because of the two time-
consuming SWin executing steps in SWin+ process.

C. Sensitivity Analysis

1) Compared with formal methods: We compare the results
of SWin executed on small-scale quantum circuits (utilizing
a trivial initial mapping) with OLSQ [17] which is a formal
method-based mapper, as illustrated in Table IV. The results

demonstrate that, although the sliding window mapping al-
gorithm employed by SWin remains fundamentally a greedy
strategy, it can achieve commendable results on small-scale
circuits, with some instances yielding faster optimal solutions.
It is because that for certain circuits, the local optimal solutions
during the circuit mapping process align with the global
optimal solutions, and the trivial initial mapping is also one of
the initial mappings for these optimal solutions. Furthermore,
our approach exhibits a substantial improvement in efficiency
compared to OLSQ, particularly as the number of qubits and
circuits increases.

TABLE IV: Comparison with formal method-based mapper.

Benchmark name n d
OLSQ SWin

Depth RT Depth RT

qaoa n3 3 10 10 1.69 16 0.02
fredkin n3 3 11 11 2.43 17 0.02
wstate n3 3 17 17 5.77 23 0.02

cat state n4 4 4 4 0.26 7 0.01
hs4 n4 4 5 5 0.57 11 0.01
bell n4 4 9 9 1.90 16 0.03

adder n4 4 11 11 16.07 21 0.06
variational n4 4 25 25 16.51 33 0.05
basis test n4 4 53 53 146.08 61 0.07
vqe uccsd n4 4 128 128 1023.06 135 0.07

basis trotter n4 4 733 N/A1 N/A 1 741 0.47
qec en n5 5 14 14 3.65 19 0.01

error correctiond3 n5 5 77 77 943.60 83 0.06
1 The circuit basis trotter n4 costs more than three days without
returning a result.

2) Noise-aware mapping: The A∗ heuristic function of
SWin is readily adaptable to incorporate noise-aware capa-
bilities. In scenarios where the depth implications of two
SWAP insertion strategies are equivalent, the estimated fidelity
serves as a decisive tie-breaker. Utilizing noise data from IBM
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Fig. 11: Impact of sliding window size on the compiling result of circuits and Thigh and Tlow on large-scale circuits. (a) Impact
of window size on result depth and processing time (b) Impact of Thigh (c) Impact of Tlow (d) Impact of greedy window size.

Guadalupe, we conduct further experiments on benchmark cir-
cuits to compare the performance of the original SWin with its
noise-aware variant, as detailed in Table V. The findings reveal
that the overall fidelity is effectively enhanced across most
benchmarks. This reduction in circuit depth also contributes
to significant fidelity improvements during actual execution of
quantum circuits.

TABLE V: Noise-aware results.

Benchmark name Original SWin Noise-aware SWin
Depth Fidelity Depth Fidelity

adder n10 147 0.019 138 0.083
qaoa n6 99 0.266 94 0.258

ising n10 80 0.057 113 0.028
vqe uccsd n6 1405 1.814e-07 1584 6.284e-08

cm82a 208 726 3.187e-07 721 8.976e-06
sat n11 616 7.529e-07 593 1.878e-05

multiplier n15 467 1.215e-06 427 5.252e-05
dnn n8 169 0.007 170 0.016

rd53 251 1512 1.221e-16 1484 8.526e-10
z4 268 3615 2.568e-33 3471 1.666e-25

adr4 197 3963 2.456e-35 3910 6.888e-29
vqe uccsd n8 7618 1.030e-34 7930 7.475e-40
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Fig. 12: Impact of gate density on reduction to single gate and
greedy execution strategies’ result depth and processing time.

3) Comparison of reduction to single gate and greedy
execution strategies: To examine the impact of two scalable
strategies, we varied the gate density from 0.1 to 1 for
both single-qubit and two-qubit gates, with results depicted
in Fig. 12. The performance metrics used to evaluate these
strategies include time overhead and the depth of the resultant
circuit. The findings demonstrate SWin’s efficiency, charac-
terized by a linear increase in performance as gate density
escalates. Similarly, the performance related to circuit depth

suggests that the strategy of considering only one gate at a
time resembles a greedy approach more than a search method.
Circuits with fixed densities were generated using QUEKO
[43], each with a depth of thirty. For each specified density
of single-qubit and two-qubit gates, ten random circuits were
produced and mapped to IBM Guadalupe, with the average
depth and processing time serving as metrics for effectiveness
and efficiency. As the density of two-qubit gates increased,
the greedy execution strategy demonstrated greater efficiency,
maintaining similar performance in terms of circuit depth.
The Immediate Execution scheduling strategy facilitates the
more efficient performance of greedy execution, particularly
at higher single-qubit gate densities, because it allows for the
immediate execution of all single-qubit gates without the need
to consider the current mapping status.

4) Chip connectivity: The influence of chip connectivity
on circuit performance is presented in Table VI. The results
demonstrate that SWin effectively reduces circuit depth across
various chip couplings. To quantify the performance of large-
scale circuit mapping, we employ the Depth Reduction Ratio
(DRR). This metric calculates the efficiency of SWin in
decreasing circuit depth and is defined as follows:

DRR of SWin =
Depth (TOQM) − Depth (SWin)

Depth (TOQM)
,

where Depth (TOQM) means the result obtained by TOQM,
a higher depth reduction ratio indicates better performance.
Experiments are conducted on three characteristic chip cou-
plings: Linear, Heavy Hex, and Grid. These configurations
represent varying levels of connectivity, corresponding to tech-
nologies from IBM, Google [5], and USTC [7] in supercon-
ducting quantum computers, respectively. Notably, SWin tends
to be more effective on chips with lower connectivity as
compared to TOQM. This increased effectiveness can be
attributed to the relatively constrained search space available
on chips with lower connectivity, which allows our algorithm
to utilize a medium-sized sliding window and achieve results
with reduced circuit depth. Specifically, for circuits such
as wstate n27 and vqe real amplitudes, traditional greedy
strategies often struggle to identify an optimal initial mapping,
whereas SWin consistently outperforms these approaches.

5) Window size impact: Fig. 11(a) illustrates the impact of
the sliding window size Sd used in SWin on the performance
of small-scale quantum circuits. The results indicate that as
Sd increases, the depth of the resulting circuit decreases while
the linear processing time correspondingly increases. With an
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Fig. 13: Impact of Ddev on result depth, processing time and DUR on three circuits: adr4 197, cm82a 208 and vqe uccsd n6.
We change Ddev from 50 to 150 for IBM Guadalupe chip architecture, with VF2++ [41] initial mapping method.
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Fig. 14: Impact of Trollback and Thigh on result circuit depth
and processing time: with a fixed Thigh, we set Trollback from
500 to 3000.

TABLE VI: Results on different chip couplings.

Benchmark name Coupling TOQM SWin DRRDepth Time Depth Time

cm82a 208
Linear 867 6.24 747 14.28 0.14

Heavy hex 828 5.59 726 23.96 0.12
Grid 649 4.87 616 137.94 0.05

sat n11
Linear 704 3.93 645 17.92 0.08

Heavy hex 691 4.05 634 25.45 0.08
Grid 532 2.64 483 199.07 0.09

wstate n27
Linear 54 0.003 54 0.33 0.00 2

Heavy hex 173 0.98 116 4.25 0.33
Grid 98 2.08 88 64.96 0.10

vqe real amplitudes 1
Linear 31 0.004 31 0.39 0.00 2

Heavy hex 162 1.05 99 3.57 0.39
Grid 79 0.56 69 31.11 0.13

1 The circuit vqe real amplitudes means a 30-qubit and 31-depth
VQE circuit generated by IBM qiskit [9]. 2 These two circuits can
be mapped optimal on a target chip with linear couplings with a
trivial initial mapping.

appropriately selected window size, SWin demonstrates both
effectiveness and efficiency. For scenarios requiring optimal
mapping results, the sliding window size Sd is set equal to
the depth of the circuit to ensure the best possible outcomes.

For large-scale circuits, it was observed that Sd did not
provide sufficient smoothness for time processing; therefore,
we evaluated SWin using Thigh and Tlow as parameters.
Initially, Thigh was varied from 1000 to 7000 in increments of
1000, with Tlow set at 500. Additionally, Tlow was adjusted
from 0 to 300 while maintaining Thigh = 2000 during the
processing of the cm82a 208 circuit. Then, we examined

changes in the depth of the results and the processing time
as Thigh and Tlow increased to assess the scalability of SWin.
From Fig. 11(b) and 11(c), it is evident that the result circuit
depth generally decreases while processing time exhibits a
linear increase as Thigh and Tlow are raised.

Furthermore, the window size for the greedy execution strat-
egy must be carefully considered in our evaluation. To isolate
the effects of other parameters, such as Thigh, Tlow, and
Trollback, we propose substituting the search algorithm in each
sliding window with this greedy strategy. As illustrated in
Fig. 11(d), an increase in window size leads to a decrease
in the result depth of the greedy method, which then plateaus,
while processing time exhibits a linear increase. The perfor-
mance in terms of effectiveness highlights the potential of
greedy methods, particularly as the look-ahead strategy mirrors
our sliding window approach when applied at a medium win-
dow size scale. The increase in processing time is attributed to
switching windows cost: sub-circuits are iteratively generated
with lengths corresponding to the current window size.

Finally, we show the result of the impact of Trollback and
Thigh. Fig. 14 shows the overall depth decreasing and time
increasing trend as Trollback increases. As aforementioned in
Section. III-B3, when the cost inside a window is more than
Thigh, we will reduce the window size of next window by
one. When the cost is more than Trollback, we immediately
stop the mapping process in this window and reduce the
window size of current window by one, then re-execute this
window. Intuitively, Trollback should be set exceed Thigh,
otherwise Thigh will be invalidated. We set Thigh as 500, 1000,
1500, 2000 and Trollback from 500 to 3000 with step 100.
The fluctuation of the curves in Fig. 14 reflects the different
sensitivity of fixed values on window size, impacting the result
circuit depth and processing time.

6) Limited device executable depth for shallow device: To
investigate the impact of limited device executable depth Ddev ,
we change Ddev from 50 to 150 with IBM Guadalupe chip ar-
chitecture (16-qubit heavy hex architecture), with VF2++ [41]
initial mapping method. We test three circuits: adr4 197,
cm82a 208 and vqe uccsd n6. As shown in Fig. 13, the
compiling time increases linearly with Ddev increasing, and
the result depths have little changes. The overall Device
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Utilization Ratio (DUR) maintains at least 70%, averagely
around 80%.

In Fig. 13(a), with more device executable depth Ddev , the
scale of the sub-circuit will be larger (whether the depth is
deeper or the number of gates is greater), which naturally leads
to an increase in compiling time. Due to the effectiveness of
the initial mapping method, when the device executable depth
is small, the result depth after compilation decreases, as shown
in Fig. 13(b). In Fig. 13(c), the curves of the relationship
of DUR and Ddev show fluctuations, for the randomness of
sampling may significantly influence the slicing parameter and
further impact the DUR of results. Each sub-circuit’s structure
and the initial mapping using the VF2++ method are also
important factors influencing the results.

V. CONCLUSION AND DISCUSSION

In this study, we introduce a qubit mapping and rout-
ing algorithm to optimize the balance between effectiveness
and efficiency in quantum circuit compilation. We start by
examining the gaps between the results from conventional
greedy mappers and the optimal solutions, identifying inef-
ficiencies. These insights lead to the discovery of two patterns
that significantly prevent achieving optimal results. Based
on these findings, we develop SWin, an advanced algorithm
designed to efficiently achieve near-optimal mapping outcomes
through two efficiency-guaranteed strategies: reduction to sin-
gle gate and greedy execution. Empirical evaluations show that
SWin significantly improves effectiveness, achieving a 2%-
39% reduction in circuit depth compared to leading greedy
methods. To address the impact of chip noise, SWin can adapt
into a noise-aware variant, with only a slight reduction in
effectiveness. Even with variations in target chip coupling,
SWin consistently achieves significant reductions in result
circuit depth. Especially in shallow devices with limited ex-
ecutable circuit depth, the enhanced version SWin+ signif-
icantly improves the efficiency of the mapping and routing
processes while maintaining the quality of results in terms of
circuit depth.

Limitations and Future Work: The main challenge is
balancing effectiveness and efficiency in qubit mapping and
routing. The optimal solution method is still too costly and
time-consuming, limiting SWin’s ability to achieve both goals
in some scenarios. Additionally, the performance of our
efficiency-guaranteed strategies, reduction to single gate and
greedy execution, may be affected on highly connected chips.
Future efforts will focus on refining these strategies to over-
come connectivity-related challenges and enhance the overall
effectiveness of the algorithm.
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